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An impurity atom in a lattice of harmonically coupled atoms and 
the stationary generalized Langevin equation I1 

T Morita and Y Fukui 
Department of Applied Science, Faculty of Engineering, Tohoku University, Sendai, Japan 

Received 1 January 1973 

Abstract. A generalized Langevin equation is set up for: (i) the velocity of an impurity a tom; 
and (ii) the set of the displacement of an impurity atom and its velocity. The friction function 
P ( r )  for the former equation tends to a nonzero value at t -, a, if the impurity atom is 
localized in space and if the limiting value of r'(t) at t -, 30 exists. The friction function 
r(t) for the latter equation always decays to zero, if its limit a t  large t exists. When the 
impurity atom is not localized in space, the latter equation is reduced to the former. The 
decay, and its rapidity, of the friction function r(t) for the latter equation are investigated 
for an impurity atom in a lattice of harmonically coupled atoms, and the applicability of the 
stationary generalized Langevin equation is discussed for the impurity atom. 

1. Introduction 

In a preceding paper (Fukui and Morita 1971), the present authors derived the stationary 
generalized Langevin equation. In their succeeding paper (Fukui and Morita 1972, to 
be referred to as I), they discussed the applicability of that equation to the motion of an 
impurity atom in a lattice of harmonically coupled atoms. The system is a slight exten- 
sion of the system investigated by Rubin (1960, 1961) and others as a model of the 
brownian motion. In Mori's formalism (Mori 1965), the generalized Langevin equation 
for the velocity u ( t )  of the impurity atom is given by 

r'(t-t')u(t')dt'+ R'(t). 

The friction function r'(t) is connected with the random force R'(t) by the relation 

The present authors (Fukui and Morita 1971) argued that, if the friction functions 
occurring in the generalized Langevin equation decay to zero fast ,  the corresponding 
stationary generalized Langevin equation is valid. For the present case, if r'(t) decays to 
zero fast, one obtains 

r'(t - t ')u(t ') dt'+ Rf(t) (1.3) 
and 
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The present authors showed in I that the friction function I-'(?) decays to zero fast 
enough for the impurity atom in a one-dimensional lattice of infinite length if there 
exists no coupling of atoms to fixed points, and they concluded that the stationary 
generalized Langevin equation is obtained for this system. For the simple cubic lattice, 
the friction function r'(t) is found not to decay to zero. For any lattice T'(r) does not 
decay to zero if there exists a coupling of atoms to their respective equilibrium points. 
For the square lattice of infinite edge length, if therc exists no coupling of atoms to 
fixed points, r'(t) decays to zero but the decay is not fast enough. 

In the present paper, we investigate an impurity atom in a system in thermal 
equilibrium. The generalized Langevin equation (1.1) is obtained under the assumption 
that 

( & c )  = 0 (1.5) 

where i. = d(0) and i.(t) = dv(t)/dt. We further assume that the correlation function of 
the displacement x(t) of the impurity atom decays to zero : 

lim(x(t), x(0)) = 0. (1.6) 
t +  a 

Discussion is given of this assumption at the end of $2 .  We then prove that, if the 
limiting value of P(t)  at large time t exists, it is given by 

(1.7) means that r'(t) does not decay to zero as far as (x, x) is finite. Note that (x, x) 
can become infinity only for an infinite system. Thus we conclude that r'(t) decays to 
zero only if the impurity atom is not localized in space in an infinite system. 

Next, we set up the generalized Langevin equation for the set of the displacement 
x(t) and its velocity u( t ) .  By assuming (1.5) and 

(x, U) = 0 (1.8) 

we obtain the following set of equations : 

d 
-x(t) = Y ( t )  
dr 

By assuming (1.6), we show that r(t) always decays to zero : 

lim r(t) = 0 
1 -  X 

if the limit exists. The relation between r(t) and r'(t) is given by 

( 1.9) 

(1.10) 

(1.11) 

(1.12) 

Substitution of this relation into (1.10) and comparison of the result with (1.1) shows that 

(1.13) 

By the relations (1.12) and (1.13), we see that (1.10) reduces to (1.1) if (x, x)  = cc. 
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The above discussion, the details of which are given in @ 2 and 3, shows that in the 
case when the impurity atom is localized in space and if the displacement is not included 
in the dynamical variables X j ( t )  for which the generalized Langevin equation is written, 
the memory of the initial displacement is included in the random part of the force and 
the correlation of that force, or equivalently r'(t), cannot decay to zero. If we require 
that the correlation of random force should decay to zero, we have had to include the 
displacement in the set of dynamical variables Xj ( t ) .  

In order to give the stationary generalized Langevin equation, a fast decay of r(t) 
is required. We discuss the asymptotic behaviour of r(t) for an impurity atom in harmonic 
lattices in $0 4 and 5. 

2. The generalized Langevin equation for the velocity of an impurity atom 

We investigate the generalized Langevin equation for an impurity atom in a system in 
thermal equilibrium. We shall first set up the generalized Langevin equation for the 
velocity v( t )  of the impurity atom. Assuming (1.5), we obtain the equation (1.1) with the 
relations (1.2) and 

(R'(t), u(0)) = 0. (2.1) 
Taking a correlation of (1.1) with u(0) and then a Laplace transform, we have the Laplace 
transform of the two-time correlation function ( v ( t ) ,  v(0)) in the following form: 

where (c, v ) ,  and ri are the Laplace transforms of ( u ( t ) ,  U )  and r'(t), respectively. 
Solving (2.2) for ri, we have 

If the limiting value limf-+cc r'(t) exists, it is related with the Laplace transform r'i by 

lim rl(t) = lim Z r ;  
f+'x z + o +  

(Widder 1946)t. Using (2.3) in (2.4) we have 

Z 

f'cc 

Here we shall present an identity : 

(0, U>, (x,x) = lim -, 
r+o+ z 

t Theorem 1 on p 181 or corollary la on p 182 of Widder's book (1946) shows that 

lim f(s) = lim a(t). 

whenever the limit on the right-hand side exists, where 
S - O +  ,'E 

f(s) = s jOm a(t) e-ar dt. 

(2.4) 
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A proof of this identity is as follows : 

lim = lim Jl dt,  j:' dtZ(U(tZ). d o ) )  
2 - O +  2 I +  m 

= 1-x lim J~d~,(x( t I ) - .x(0j ,  c(0)) 

0 

= lim dt,(x(O), c c t , ) )  

= (x(0), x(0)) - lim (x(O), x( - t ) )  

= (x,x). 

1-z j-, 
1-x 

This proof shows that (2.6) follows if (x. U )  = 0 and 

lim(x(t), x(0)) = 0 
1 - 2  

are assumed. 
Substituting (2.6) into (2.5), we have 

(2.7) 

(U. U )  
lim rl(t) = ---. (2.8) 
1- z (x, x> 

This shows that rl(t) decays to zero only if (x, x) = E. As noticed in 6 1, this occurs 
only for an infinite system when the impurity atom is not localized in space. 

We consider that the assumption (2.7) is related to the choice of the origin of the 
coordinate x. If the system is ergodic and the left-hand side of (2.7) tends to (x)', the 
origin of the coordinate must be chosen such that (x) = 0. If an infinite system is 
investigated, the thermodynamic limit must be taken in a fashion that guarantees the 
assumption (2.7). 

3. Equations for the velocity and the displacement of an impurity atom 

In this section, we set up the generalized Langevin equation in Mori's formalism (Mori 
1965) for the set of the displacement x ( t )  of an impurity atom and its velocity u(rj. The 
notation used follows Fukui and Morita (1971). In setting up the generalized Langevin 
equation, the projection operator P is introduced, which satisfies 

(1-P)v) = 0 

(u(1-P) = 0. (3.1) 

and 

When the equation of motion is written for the set of x( t )  and its time derivative v ( t ) ,  
the equation for x( t )  must naturally be given by 

d 
--x(t) = ~ ( t ) .  
dt (3.2) 
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In fact the random force R,(t) corresponding to the variable x ( t )  is identically zero: 

R,(t) 0 (3.3) 

as seen by a comparison of its definition : 

(R,(t) = (xL(1 - P )  exp(L(1 - P ) t }  

R,) = (1 - P ) L x )  

with (3.1). Here L is the Liouville operator and (xL = (U and L x )  = U). 

For the static correlation functions, we assume (1.5) and (1.S). By using (3.3), we find 
that the generalized Langevin equations for the set of x( t )  and r ( t )  are given by (3.2) and 
the following equation : 

r(t-t')u(t') dt '+ R(t) 

where 

Q(x, x) = ( l j ,  x) = -(U, U) 

(3.4) 

By taking a correlation of (3.2) and (3.4) with u(0) and then a Laplace transform, we 
obtain 

or 

( v , u )  1 ( u , u )  rz = -z+------ 
( 0 ,  U>, z (x, x> .  

Comparison of (3.8) and (2.3) shows that 

r = rI--- 1 (v,v) 
z (x, x) '  

By (2.6) and (2.3), this reads 

1 r, = r:-- lim (zr:). z r + o +  

The inverse Laplace transform of (3.9) gives 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

If limt+ r(t) exists, it is given by lim,,,, zr,. (3.10) then shows that 

lim r(t) = lim zr, = 0. (3.12) 
r+a Z,O+ 

r(t) occurring in (3.4) always decays to zero, if its limit at t -+ 00 exists. 
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Substitution of (3.11) into (3.4) and comparison of the result with (1.1) show that 

(3.13) 

Discussion of the above calculations is given at the end of 4 1 

4. Application to an impurity atom in afinite harmonic lattice 

In the preceding paper I ,  we investigated the time dependence of T'(r) for an impurity 
atom in a harmonic lattice. In this section, we investigate r(t) for an impurity atom in 
afinite harmonic lattice. The hamiltonian of the system is given by 

where x R  and p R  are the displacement and the canonical conjugate momentum of the 
atom at the lattice site R. The atom at the origin is the impurity. mR = M ( R  = 0) is 
the impurity mass and mR = m(R # 0) is the mass of host atoms. The coupling constants 
kk = K'(R = 0) and k; = k'(R # 0) are zero or positive. The coupling constant k is 
positive. a is the vector from a lattice site to its nearest neighbours. The summation over 
a is taken over all nearest neighbours. 

The equation of motion for the atom at the lattice site R is written as 

where z ,  is the coordination number of the lattice. Taking a correlation of this equation 
with i O ( O )  and a Laplace transform with respect to time, and then multiplying by z,", 
one obtains 

The resolvent R ( z ;  R )  is introduced by 

We shall adopt the periodic boundary condition. Then (4.4) is solved for R ( z ;  R )  as 
follows : 

exp(iK . a) (4.5) ) - 
1 

where N + 1 is the total number of the atoms in the system. Equation (4.3) is solved in 
terms of R(z  ; R )  as 

(4.6) 
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Comparing this expression with (3.7) and identifying k,, with c, we obtain 

r z = -  (---- 2)  
Mz R(z ; 0) R(0 ; 0)  (4.7) 

with the aid of the relation (3.12). This shows that Tz has simple poles at the zeros of 
R(z;  0). The total number of the zeros is N + 1 or N for the linear chain according to 
whether N + 1 is even or odd. One easily sees that the number is less than N + 1 also 
for the two- and three-dimensional lattices. Those zeros are on the imaginary axis 
within the ranges from i(k‘/m)’I2 to i{(2zCk + k’)/m) 112 and from - i(k’/m)’/’ to 
-i{(2~,k+k’)/m)’’~. As a result, r(t) is expressed as a linear combination of a finite 
number of functions of the form 

exP(iY C t )  (4.8) 
where y, is a real number. r(t) is not expected to decay to zero and will always behave 
irregularly. 

5. Application to an impurity atom in an infinite harmonic lattice 

Behaviours of an impurity atom in an infinite harmonic lattice are obtained from the 
corresponding behaviours given in the preceding section for the finite lattice by taking 
the limit as N -+ a;. In particular, the Laplace transform Tz of the friction function 
r(t), which occurs in the generalized Langevin equation of the velocity of the impurity 
atom, is obtained from (4.7) as follows : 

0 )  - ’ - G d (  -; z,k + k‘ 0 )  -’ - z 2 )  

zM m (5.1) 

Here G,(o; R )  is the lattice Green function which is the limit of (4.5) 

where d is the dimension of the lattice. The integral is taken over the first one or several 
Brillouin zones and cd is its volume. For the linear chain, Tz reads 

m { ( i) ‘ ’2 (  zM m m  
M z) ‘ I 2 -  (k) ”’( -+- k’ 4k) ’” -2’ ] . (5.2) r z=-  z +- z 2 + - + -  

In fact, one obtains this result by substituting the rg given in I into (3.10). 
It has been proved that the lattice Green function Gd(o ;  0) is analytic in the whole 

complex o plane except for real w within the range between -z,k/m and z,k/m (Morita 
and Horiguchi 1972). We show in appendix 1 that the same is true for the inverse 
G,(w; 0)-  ’. The singularities of the lattice Green function, due to non-degenerate 
critical points, are given in the same paper. The singularities for the linear, square and 
simple cubic lattices are all due to non-degenerate critical points. From these sin- 
gularities, we obtain the singularities of r, . 

For the linear and simple cubic lattices, the singularities of Tz occur on nonzero 
imaginary values of z. The singular behaviours are branch points of the form : 

r, - A(z-iy,)’12 z - iy, (5.3) 
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where j C  is real and nonzero and A is a constant. Here the branch of the square root is 
so chosen that (z- iy,)'" is real and positive when z-iy, is real and positive. We adopt 
a similar choice of the branch for In(z-iy,) in the following. The inverse Laplace 
transform gives 

as a contribution to the asymptotic behaviour of r(t) from (5.3). In particular, for the 
linear chain with k' = 0, we have 

The above result (5.4) shows that r(t) for the linear and simple cubic lattices decay fast 
enough that 

loz Ir(t)l dt < x. (5.6) 

For the square lattice with k' # 0, the singularities of Tz occur only on nonzero 
imaginary values of z and they are branch points of the form : 

(5.7) 

The asymptotic behaviour of the inverse Laplace transform due to this singularity is 
found to be given by 

in appendix 2 .  The asymptotic behaviour of r(t) for this case is a linear combination of 
terms of this form, and (5.6) is satisfied. 

For the square lattice with k' = 0, z = 0 becomes a branch point of r, and the 
singularity for it is 

2nk 
M z (  - In z )  

rz - z - 0. 

The asymptotic behaviour of the inverse Laplace transform of (5.9) is 

3nk 
M In r '  

(5.9) 

(5.10) 

(cf appendix 2 ) .  The asymptotic behaviour of r(t) is given by a linear combination of 
(5.10) and terms of the form (5.8). (5.10) takes a decisive role?, and (5.6) is not satisfied 
for this case. 

The lattice Green functions for the FCC and BCC lattices involve singularities of the 
form [In(o+(4k/m))l2 and (In w ) ~ ,  respectively, in addition to the ones due to non- 
degenerate critical points (eg Morita and Horiguchi 1971). Those singularities give rise 
t The coefficient of (5.9) in I is not correct. kev/ (2n) /M In f there should read 2nkiM In t 

Other errors in 1 are as follows. The minus sign in front of the second term in the braces of (4.8) should be 
replaced by a plus sign. (4.8) applies when m/M < ). When ) Q m/M < 1, the first term in the braces, the 
exponentially decaying term, should be omitted. For I < m / M ,  a localized mode appears and (io([), iO(O)) 
keeps oscillating. 
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to branch points of the form 

(5.1 1) 

for r, of those lattices, where y, is real and nonzero. The asymptotic behaviour of the 
inverse Laplace transform of (5.1 1) is given by 

(5.12) 

(cf appendix 2). The asymptotic behaviour of r(t) is now given by a sum of terms (5.12) 
and (5.4). (5.12) takes a decisive role. (5.6) is satisfied for the FCC and BCC lattices. 

The above calculations show that the square lattice with k' = 0 is an exceptional 
case when (5.6) is not satisfied. 

6. Conclusions 

It is shown that if the generalized Langevin equation is set up for the variable r ( t ) ,  the 
friction function r'(t) in that equation decays to (U, u)/(x, x) if limt-OD r'(t) exists. 
Hence it can decay to zero only if (x, x) = CO, that is, for an infinite system in which the 
particle is not localized in space. If the equation is set up for the set of variables ~ ( t )  and 
x(t), the friction function T(t)alwaysdecays tozeroiflim,,, r(t)exists. When (x,x) = CO, 

this set of equations reduces to  the previous one. The random force R'(t) for the former 
equation is found to be a sum of the random force R(t) for the latter equation and a 
constant ( - ( U ,  u)/(x, x))x(O). When the particle is localized in space but the spatial 
coordinate x(t) is not included in the set of the dynamical variables for which the genera- 
lized Langevin equation is set up, the memory of the initial position is put in the random 
force RI([) and the correlation of R'(t) and R'(0) does not decay. 

The asymptotic behaviour of r(t) is investigated for an impurity atom in a harmonic 
lattice. The results for an infinite lattice are given as follows. For the linear and simple 
cubic lattices, the asymptotic behaviour of r(t) is expressed as a linear combination of 
terms of the form exp(iy,t). For the FCC and BCC lattices, it is given by a sum of 
the terms of the form A{t(ln L ) ~ } - '  exp(iy,t), and for the square lattice with k' # 0, 
by a sum of terms of the form A(t(1n t)'}>- exp(iy,t). For these cases, J$ Ir(t)l dt con- 
verges and we consider that the stationary generalized Langevin equation of the following 
form is applicable to these systems : 

d 
dt 
-x(t) = v( t )  

The square lattice with k' = 0 is an exceptional case when r(t) - A/ln t and f $  Ir(t)l dt 
does not converge. We cannot conclude the applicability of (6.2) for this case. 

For an impurity atom in a finite lattice of N + 1 atoms, r(t) consists of at  most N + 1 
terms of the form exp(iy,t). It will stay finite forever, and (6.2) will not apply for this 
case. 
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Appendix 1. Analyticity of C,,(o; 0)- * 

The lattice Green function at the origin takes the form 
1 , -  1 

where c(k) takes real values. The integral is taken over the first one or several Brillouin 
zones and cd is its volume. The imaginary part of this expression is 

1 
Im G d ( u ;  0) = - Im w- dk. 

This quantity cannot be zero if Im w is not zero. Thus we conclude that 

Gd(w;O)  # 0 if Imw # 0. 

Next, we consider real w which is larger than the maximum (cmsx) of ~ ( k )  and then 

Gd(w;O)  > 0 if o > emax.  

In a similar way, for real w less than the minimum (cmin) of c(k), we have 

As a result we conlude that Gd(w;  0) cannot have a zero in the whole complex w plane 
excluding the real axis between emin and c,,, . In the same region, G d ( o ;  0) is known to be 
analytic (Morita and Horiguchi 1972). Hence we conclude that G,(o;O)-'  is also 
analytic in the same region. 

The present proof can be extended to systems with many bands. In that case, there 
might occur one zero of Gd(w ; 0) and hence one pole of Gd(W ; 0)- between two successive 
bands. Except for those points, G,(w ; 0)- ' is analytic outside the bands. 

Appendix 2. Long-time asymptotic behaviour of r(f) 

We shall discuss the derivation of the long-time asymptotic behaviour of r(t) from the 
analytic properties of its Laplace transform rL.  In  9 5 ,  we find that r, is analytic except 
on the imaginary axis. Hence r(t) is calculated from by 

Here C is the path from 0 - i s  to o + i x  parallel to the imaginary axis where B > 0. 
Let us assume for the purpose of illustration that Tz has four branch-points z l ,  z 2 ,  z 3  
and z,, and no poles, on the imaginary axis as shown in figure 1 .  We can easily confirm 
that r, given by (5.1) tends to zero as JzI -+ x. Then we deform the path C to  the sum of 
the paths C , ,  C,, C,, C, and C, and c6 by virtue of Jordan's lemma. Here it  is assumed 
that there occur two singularities z ,  and z6 by the analytic continuation of the function 
r, defined in the half-plane with positive real z to  the left half-plane, when the cuts are 
introduced parallel to the negative real axis from the singular points as shown in figure 1. 
The real parts of z 5  and z6 are always nonzero and negative, and the contribution of the 
integrals along C, and C, to r(t) has an exponential damping factor and decays faster 
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Complex z plane -1 
I 

Figure 1. Deformation of the path of integral C to C ,  - C, in deriving the longtime 
asymptotic behaviour of r(t) from the analytic behaviour of the Laplace transform r,. 

than the contributions from the paths C,, C,, C, and C,. As a consequence, the long- 
time asymptotic behaviour of r(t) is given by the sum of the contributions from the 
paths C, ,C, ,C,and  C,. 

We now calculate the long-time asymptotic behaviour of the contribution from each 
branch-point on the imaginary axis. First we consider the case when Tz has a branch- 
point at the origin and behaves like 

where f (z) is analytic in a neighbourhood of z = 0 and f (0) # 0. It is assumed that 

lim ezff'(z) = 0 
121-m 

(Re z < 0, t > 0). 

CI and p are arbitrary complex numbers. Then the contribution to r(t) from this 
singularity is given by 

where CO denotes the path shown in figure 2. Changing the variable z to z' = zt, one 
has 

dz. f (zit) ez 
za{ 1 -(In z/ln t)}P 

Z(c1, p ;  t )  = - - 

If c1 is not equal to zero or a negative integer, we use Hankel's formula for the gamma 
function and obtain the following formula : 

f ( 0 )  tu- '  
Z(a, p ;  t )  - - - r(a) (In t)P 

t -+ cc. 
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Figure 2. Path of integral Co. 

Here r(a) denotes the gamma function which must be discriminated from the friction 
function. I t  is obvious from the above derivation that the formula (A.5)  is valid as far as 
f (0)  lim,,,f(z) does exist, even if z = 0 is a branch-point of the function f ( z ) .  

When c( = 0, (A.4) reads 

We integrate this expression by parts and obtain 

e'' (Pf  ( z )  - z In z f " ( z ) )  
dz. 

If p # 0, we use the formula ( A S )  for I (  1, P +  1 ; t )  to this integral and obtain the following 
asymptotic behaviour : 

('4.7) 

When a is zero or a negative integer, (A.4) reads 

where n is zero or a positive integer. If p # 0, one proves by a mathematical induction 
that 

We first notice that this is true for n = 0 by comparing this with (A.7). I f  we integrate 
(A.8) by parts, we have 

dz (A.10) 
( - In z)P (-In z)P+' 

for positive n. We now suppose that (A.9) is valid for I (  - ( U -  l ) ,  P ;  t )  and use it on the 
right-hand side of (A.lO) and then we conclude that (A.9) is valid for I (  -n,  p ;  t ) .  As a 
consequence, we confirm (A.9) for zero and positive integers 17 when p # 0. 

We now consider the case where the position of the branch-point is at i j c  and the 
behaviour of is given by 

(A.11)  
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where f ( i )  is analytic in a neighbourhood of z = iy, and f(iy,) # 0. By assuming (A.3), 
we obtain 

(A. 12) 

in place of (A.7), as the contribution due to the branch-point at z = iy, to the asymptotic 
behaviour of r(t). 

In the above expressions (AS),  (A.7), (A.9) and (A.12), only the leading terms are 
given. The terms which we have ignored are smaller only by a factor of order (l/ln t ) .  
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